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Rationale and objective 

Rationale 
�	 Steam reforming of liquid fuels at high pressures can reduce hydrogen 

compression costs 
–	 Much less energy is needed to pressurize liquids (fuel and water) than 

compressing gases (reformate or H2) 

� 	 High pressure reforming is advantageous for subsequent separations and 
hydrogen purification 

Objective 
�	 Develop a reformer design that takes advantage of the savings in compression 

cost in the steam reforming bio-derived liquid fuels 
–	 Metric: 

• Improved efficiency of the hydrogen production / purification process 
–	 Constraint: 

• Must be cost effective 
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Approach 

�  Steam reform bio-derived liquids at high pressure 
– Define conditions suitable for reforming of bio-derived liquids 
– Define system concepts that can meet efficiency targets 
– Develop reactor concepts through simulations 

•  Incorporate membrane technology (O2, H2, CO2) 
• Incorporate developments in catalysis 

– Validate concepts at successive scales 
•  micro-reactor, bench-scale, tech transfer 

� Analytically and experimentally evaluate 
– Elevated-pressure steam reforming, potentially combined with 
– Membrane separations 
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Evaluation metrics 

�	 Near Term – focus on individual process steps 
–	 Generate technical data, e.g., kinetics, flux, etc. 
–	 Quantitative measure : Efficiency (evaluate by modeling) 
–	 Qualitative indicator: Feasibility (evaluate experimentally) 

• e.g., operating conditions, such as T and P combinations 

� 	 Mid Term – focus on multiple process steps 
–	 Generate engineering-scale data, e.g., yields, durability, etc. 
–	 Determine (by simulations) process efficiency and develop cost 

projections 

� Longer Term – in consultation with early adopters (industry partners) 
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Reforming at high pressures yields more methane, less
hydrogen at thermodynamic equilibrium 

� Coke formation tendency increases 
with increasing pressures 

� Coking tendency can be lowered 
by using excess steam or higher 
temperatures 

moles of CO+CO2 Produced
COx Selectivity, % = •100 

g-atoms of C in Feed 

C
O

x S
el

ec
tiv

ity
Pr

od
uc

t Y
ie

ld
m

ol
/(m

ol
-E

tO
H

)
%

6 

5 

4 

3 

2 

1 

0 

H2 

CO2 

CH4 

CO 

S/C = 6,  T = 700°C 

0 1000 2000 3000 4000 5000 
Pressure, psia 

120 

100 

80 

60 

40 

20 

0 

COx 

S/C = 6,  T = 700°C 

0 1000 2000 3000 4000 5000 
Pressure, psia 

5 



Challenges in high-pressure reforming and options to 
address them 

�	 Higher pressures increase CH4 yields and decrease H2 yields 
–	 Options to overcome challenges 

• Higher temperature 
(but high T & P combinations increase materials costs) 

•  Higher steam-to-carbon (S/C) ratio 
(but excess steam generation may lower process efficiency) 

•  Hydrogen removal to increase conversion and yield pure H2 
(may increase coke formation tendency; product hydrogen is at 
lower pressure) 

•  CO2 removal to improve CH4 conversion and yield higher purity H2 

�	 Oxygen provided through an O2-transport membrane can provide the 
heat for the endothermic reforming reaction without introducing N2 

–	 Potentially replace combustion zone with air zone? 
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Membrane reactor testing apparatus 
 

� Rated for 1,000 psi, 800°C 

�  6.4 mm (0.25 in) ID reactor 
tube 

�  4 wt% Rh/ La-Al2O3 

�  Powder, 150-250 µm 

�  0.45 g of catalyst 

�  35 mm long catalyst bed 

�  Pd-alloy membrane tube: 
3.2 mm OD, 25.4 mm long, 
30 μm thick 
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Hydrogen transport follows Sievert’s and Arrhenius laws 

F = k [(PH2,hi)½ – (PH2,lo)½ ] k = Ao e-E/RT
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T=675°C

The hydrogen yield increases with decreasing GHSV and
with increasing temperature 
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A mathematical model of the membrane reactor has been 
set up 

�	 Evaluates effect of hydrogen extraction across a membrane in the steam-
reforming reactor 

� 	 Provides ideal case scenario (upper bound) for reactor performance 

� 	 Assumes: 
–	 fast chemical reaction kinetics (equilibrium limited reactions) 
–	 C2H5OH + H2O = 2CO + 4H2 (Ethanol SR) 
– 	 CH4 + H2O = CO + 3H2 (Methane SR) 
–	 CO + H2O = CO2 + H2 (WGS) 
–	 no gas-phase mass-transfer limitations in the reactor 
–	 membrane follows Sievert’s and Arrhenius laws 

10 



Measured permeate hydrogen yields are consistent with
model predictions 
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�	 The model predicts that 4.5* moles of hydrogen (per mole of ethanol) 
should be achievable at GHSV of ~5000 hr-1 

*75% of theoretical H2 yield of 6 moles/mole of ethanol 
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Hydrogen flux across the membrane is lower than desired 
 

�	 With current flux (Jo), only 
1.7 moles of H2 can be 


extracted
 

�	 A 5-fold increase in flux could 
extract 5.6 moles of H2 

�	 The flux can be increased with 
thinner membranes 
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The hydrogen extracted can be improved by varying
GHSV and temperature 
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Summary 

�	 We are pursuing an advanced reactor concept that reduces significantly 
the energy required to compress the product hydrogen 
– Steam reforming of bio-derived liquids can be a feasible option 
– Membrane reactors provide in-situ separation and purification 

� 	 Experimental membrane reactor studies are being guided by a 


reactor model 
 

–	 Preliminary results indicate that acceptable hydrogen yields may be 
possible even with thick Pd-alloy membrane/support layers 
• Easier to fabricate, but involves higher materials costs 

� 	 Appropriate combination of temperature, space velocity, and membrane 
improvements could make this reactor concept cost effective 
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Future work 
 

�	 Conduct systems analyses to evaluate the feasibility of alternative fuel 
processor designs using pressurized reforming 
–	 Based on experimental data generated 

�	 Make a go/no-go decision on the use of Pd-based H2 transport 
membranes based on performance and cost 

�	 Verify experimentally the influence of O2 and CO2 transport membranes 
on pressurized reforming 
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